
PAPER 2 REVISION

GUIDE

Eduqas Computer Science 9-1

0

30% OF OVERALL MARK

Greenfoot, HTML, Assembly Language,

Algorithms

David Woods with some copy and

paste from www.greenfoot.org,

www.teach-ict.com, Mark Clarkson

and peterhigginson.co.uk

Table of Contents
GREENFOOT .. 2 HTML ..

..
15 ASSEMBLY LANGUAGE
19 SEARCHING ALGORITH

MS... 21 SORTING

ALGORITHMS ... 25 ALGORITHMS

AND PSEUDOCODE... 32 FLOWCHARTS .. 35

1

GREENFOOT

Definitions

Class- stands for the general concept of something in Greenfoot e.g. The class of Wombat defines

all Wombats

Object- We can create objects from a class. E.g. each separate Wombat will be an object (or

instance)

Method- An operation that an object can do. I.e. a bit of code that makes the object work.

How methods work in the program
The act() method.

This is what the

object does when

play is pressed. In

this case a crab…

 Checks for key

press

 Moves

 Looks for worm

 Switches image

The act method calls

the other methods

defined below it.

2

The methods are

defined down here.

You can see

checkKeyPress

lookForWorm

The others will be

below.

Cases for defining methods, variables

classes/objects

Objects and Classes- Capitalise e.g. Worm ,Athlete, Crab, Lobster, Wombat, Tree

Variables –camelCase e.g. totalScore, wormsEaten, a, number, myWorm, x,y etc

Methods – camelCase e.g. checkKeyPress, act, turnAtEdge

Defining Methods

Can be accessed

by other objects

Does not

return

anything Name of method

Parameters

anything in the

brackets provides

additional

information to the

method

public void checkKeyPress ();

Can be accessed

by other objects

Does not

return

anything Name of method

Needs an integer

called amount

public void addAmount (int amount);

Can be accessed

by other objects

Returns True

or False Name of method No extras needed

public boolean hasWings ();

Can be accessed

by other objects

Does not

return

anything Name of method

3 integers called x y

z

public void compare (int x,int y,int z);

Can not be

accessed by other

objects

Returns an

integer Name of method No extras needed

private int showScore ();

3

Defining Variables

When defining variables define the type

Eg. int age; integer called age

age=12; the value 12 has been assigned to age

You can do it in one line

int age =12;

boolean isHungry =True;

int score;

int year=2014;

Variables can be the result of other variables

int a=12

int b=2

int sum =a+b;

The type of a variable can be a class/object

e.g. Crab myCrab;

myCrab = newCrab();

Or in one line

Type of variable is a class –Crab in this case. Note Name of Assign an object

the capital letter

variable Crab() to the variable

Crab myCrab = newCrab();

4

Local Variables and

instance (global)

variables
If you define variable in a method then that is a local

variable. It disappears outside the method. It belongs

to the method.

You can define an instance variable which you

declare inside the class but outside the method.

Instance variables belong to the class and can be

used again and again. Use the keyword private to

define them.

Instance variables. Defined in the

class but not in the method. The y

use the keyword private.

Global variables

Local and Global

Local variables.

Variables Advantages

Local variable only exist in the function or method.

They disappear when the method is not used. Global

variables exist throughout the whole program. It is

best to use local variables wherever possible. Global

variables waste memory because they use up a

space in RAM from the beginning to the end of the

program. It is more difficult to trace a problem in

programs which use global variables.

Code – Movement

move(int distance); e.g. move(5); -moves in the

way the object is facing bigger the number, faster

the movement

turn(int angle); e.g. turn(180); -full turn

setLocation(x,y); go to a co-ordinate e.g.

1. setLocation(120,200) goes to this

co-ordinate.

2. setLocation(getX(),getY()+4) goes to

current x location, current y location +4 i.e. moves

up on the y-axis

5

Code –Random

Numbers

Greenfoot.getRandomNumber(integer) will get a

random number between 0 and the integer

Code- Edge detection

isAtEdge() returns True or False

Code – Selection (if

statements) If object hits an edge

turn17
o

if a random number is picked out of a 100 that is less

than 10 (10% of the time) turn -45
o

Code –Selection

(if-else statements) if

(condition)

{

statements;

}

else

{

statements;

}

Code - Sound

Greenfoot.playSound(“slurp.wav”);

6

Code-Key Detection

isKeyDown(“left”)

Code – Add Objects

to world automatically

Adds two camels to the world

Super(600,400,1) –size and resolution of world

Type of variable is

Camel class. Note

Name of variable A new Camel instance (object) gets assigned to the

variable myCamel

the capital letter

Camel myCamel = new Camel();

addObject(myCamel,200,200) the variable

myCamel is added to the world (remember it

contains an object)

7

Code-Collision

Detection
Boolean isTouching(Class cls)

Check whether this act is touching objects of the given class

Example:

List getIntersectingObjects(Class cls)

Return all the objects that intersect this object

Actor getOneIntersectingObject(Class cls)

Return an object that intersect this object

Example:

See getOneObjectAtOffset for explanation

List getObjectsAtOffset(int dx, in dy, Class cls)

Return all objects that intersect the given location (relative to this object’s location)

Actor getOneObjectAtOffset(int dx, in dy, Class cls)

Return all objects that intersect the given location (relative to this object’s location)

Example:

Type of variable World .variable name world

Place into the variable ‘worm’. Any worm class that

intersects with the object at 0,0 (probably top corner of

your object

This is like a double negative if there is not nothing in the variable

worm I.e. if there is something or if worm is not empty

Type of variable Actor .variable name worm

Put the current world into the variable called world

Remove whatever object is in the worm variable from the world

(i.e. a worm)

8

Code-Removing

Objects

Removing yourself!

To remove an object itself i.e. within the code for an

object. E.g. a bacteria cell floats to the edge of a

world and you want it to disappear.

getWorld().removeobject(this);

This method belongs to the world object so you

can’t just use remove object(this); You have to get

access to the world object with getWorld()

This removes my Bee when it hits the edge

Removing someone else!

removeTouching(Class cls);

Removing someone else 2!

 Variable called bacteria type is Actor

 Put a bacteria.Class (object) into the

variable bacteria when it intersects

 If bacteria is not empty (double

negative)

 Remove the bacteria (You need get

world as this is from the World class)

Code –stop
Greenfoot.stop();

9

Code –Add Text

import java.awt.Color; at the top (Underneath

import Greenfoot;)

setImage(new GreenfootImage(" Your Text",size,

Color.TEXTCOLOUR, Color.BGCOLOUR));

setImage(new GreenfootImage(" 0", 20,

Color.WHITE, Color.BLACK));

Code –Accessing One

Object from Another

This asteroid game has a counter. You shoot

asteroids and the score increases with every hit.

The method bumpCount() increases the counter score

10

It would make sense to call the method

bumpCount() from the shot object. I.e. when the

shot hits

the asteroid.

The solution to let objects interact with each other I.e. the shot object with the counter object is……

THIS WILL NOT WORK

Cannot find symbol -
method bumpCount()

Store a reference to the counter in

the world, then retrieve it from the

shot when we need to.

1.

Storing a reference to the counter in the world

This is the world

declare a global variable to store the reference to the

Counter. Must be declared outside the code for space

world but inside the class

assign global variable (the Counter) a counter in

the world

Place it in the world

2.

Add a method to the world to retrieve the value of "theCounter" so it can be accessed by

the the other object (shot in this case)

Still in the world

This will allow the object to get access it will call the

getCounter method on the world to obtain a

reference to the counter.

11

3.

Now to call the bumpCount method on the counter reference from the object.

We are now in the shot class not the world

Get a reference to the world. Put it in a

variable (spaceWorld in this case)

Get a reference to the counter. Put into to

a variable called counter use getCounter()

which you put in the world

Now you can call the bumpCount method.

Which will increase the counter. The

counter will be increased by 5 in this

method call

Greenfoot Helpful

Shortcuts

Indentation

Indents do not affect the running of the program but

they make it easier to understand

Will sort out the indentation

Code completion

Start to type some code and press

12

Greenfoot –Common

Errors

1. The classic error! ‘reached end of file while

parsing’ You have missed the last }

To solve this add the } at the end.

Press ctrl+shift+i then check there

is geen x with yellow then blue

then white inside.

Green

Yellow

Blue

white

2. ;expected.

The code in the

white sections (in the methods) should have ;at the

end of each line

13

3. Cannot find symbol method…….

The code has been spelled wrong or you have missed

a dot.

14

HTML

HyperText Markup Language displays and

formats content on a webpage

Tags

<html>… </html>

<head>…</head>

<body>…</body>

<h?>…</h?> -heading

15

<p>…</p>

 ... -bold

<i> ... </i> -italic

<u> ... </u> -underlined

<blockquote> ... </blockquote>

16

 link text -anchor/link

<hr> -horizontal rule

 ... -unordered list

 ... -list item

 -Line break

17

<center> …</center> -Centre text

 -image

18

ASSEMBLY LANGUAGE

This is the mnemonic language that can be used to

program the CPU. It is often simulated with the Little

Man Computer

Name Description

HLT Stop (Little Man has a rest).

ADD Add the contents of the memory address to the Accumulator

SUB Subtract the contents of the memory address from the Accumulator

STA Store the value in the Accumulator in the memory address given.

LDA Load the Accumulator with the contents of the memory address given

BRA Branch - use the address given as the address of the next instruction

BRZ Branch to the address given if the Accumulator is zero
BRP Branch to the address given if the Accumulator is zero or positive

INP Input take from Input

OUT Output. copy to Output

DAT Used to indicate a location that contains data.

19

Example programs

Using BRA

20

SEARCHING ALGORITHMS

Linear searching
This is the simplest kind of searching. It is also called

the linear search or sequential search Searching starts

with the first item and then moves to each item in

turn until either a match is found or the search

reaches the end of the data set with no match found.

A criteria is set up before the search begins. e.g.

"find the address of customer no 1344" This criteria

will allow a possible match to be found within the

records / items stored. If no match is found, then the

process will return the appropriate message.

Serial searching algorithm

Set up the search criteria

Examine first item in the data

set

If there is a match, end the

procdure and return the result

with 'match found'

If no match is found repeat

with the next item

If the last item is reached

and no match is found return

'match not found'.

Advantages

Serial search is fairly simple to code. For example the

pseudo-code below shows the algorithm in action

For i= 0 to 19

check_for_match(i, list)

if match_found return 'match found'

Next i

return 'no match found'

The subroutine starts with a loop going over a 20

element list / array. Each item is checked until either

a match is found or the loop ends and the 'return 'no

match found' is reached.

21

In Flowchart form

Good performance over small to medium lists.

Computers are now very powerful and so checking

potentially every element in the list for a match may

not be an issue with lists of moderate length.

The list does not need to be in any order. Other

algorithms only work because they assume that the

list is ordered in a certain way. Serial searching

makes no assumption at all about the list so it will

work just as well with a randomly arranged list as an

ordered list.

Not affected by insertions and deletions. Some

algorithms assume the list is ordered in a certain way.

So if an item is inserted or deleted, the computer will

need to re-order the list before that algorithm can be

applied. The overhead of doing this may actually

mean that serial searching performs better than

other methods.

Disadvantages

May be too slow over large lists. Computers take a

finite amount of time to search each item, So

naturally, the longer the list, the longer it will take to

search using the serial method. The worst case being

no match found and every item had to be checked.

This speed disadvantage is why other search

methods have been developed.

22

Binary search

This is a fast method of searching for an item in a

sorted / ordered list.

Sometimes, you may be doing a binary search

without realising it.

Example

You want to find Samuel Jones in the local telephone

book. Would you start at page 1and then go on from

there, page by page? Unlikely.

You don't do this because you know an important

fact about telephone books - the entries are in

alphabetic order. So what you do is make a guess - J

is about halfway down the alphabet and so you open

the telephone book around half way. The page you

see has names starting with N. So you know J will be

in the first half of the book. Next you open a page

about halfway down the first half -the page has 'H'. So

now Jones must be in the upper half of this section.

You are carrying out a 'Binary search' algorithm.

Notice that after only two guesses you are getting

much closer to the answer. If you were carrying out a

serial search, you would still be at page 2.

Binary Search algorithm

Set the highest location in the list

to be searched as N Set the lowest

location in the list to be searched

as L Examine the item at location (N

- L) /2 (i.e. halfway) Is it a match?

if Yes End search.

No

Is item less than criteria ?

If Yes, Set lower limit L to item +
1 (Force the next search to use the

upper half)

If No, Set upper limit N to item - 1

(Force the next search to use the

lower half)

Is lower limit = upper limit, if yes
end search (no match found)

Repeat from step 3 with the new
upper and lower bounds.

Is Binary searching better than linear searching?

It depends.

1. If the list is large and changing often, with items

constantly being added or deleted, then the time it

takes to constantly re-order the list to allow for a

binary search might be longer than a simple serial

search in the first place.

2. If the list is large and static e.g. telephone number

database, then a binary search is very fast compared

to linear search. (in maths terms it takes 2log2(n) for

a binary search over n items) 3. If the list is small then

it might be simpler to just use a linear search

4. If the list is random, then linear is the only way

5. If the list is skewed so that the most often

searched items are placed at the beginning, then on

average, a linear search might be better.

23

OUTPUT "Which customer do you want to

find?"

INPUT user inputs John Smith

STORE the user's input in the customer

variable customer_found = False

(we need to create a flag that

identifies if the customer is found)

WHILE customer_found = False:

Find midpoint of list

IF customer_name = record at

midpoint of list THEN customer_found =
True

ELSE IF customer comes before

the midpoint THEN

throw away the second half of the list

ELSE

throw away the first part of the list

OUTPUT customer details

24

SORTING ALGORITHMS

Bubble Sort
A bubble sort is a very simple algorithm used to sort

a list of numerical data into ascending or descending

order.

The algorithm works its way through the list, making

comparisons between a pair of adjacent items. Any

items found to be in the wrong order are then

exchanged. It keeps doing this over and over until all

items in the list are eventually sorted into the correct

order.

Step by step example

The following list of data (9, 23, 2, 5, 34, 56) needs to

be put into ascending order using a bubble

sort.

Step 1: Compare the first two items in the list, 9 and

23.

As 9 is smaller than 23 they are in the correct order

(ascending) so no action needs to be taken.

Step 2: Move forward by one position and compare

the next two numbers in the list - numbers 23 and 2

25

23 is larger than 2 so the bubble sort will swap the

position of those two items.

Step 3: Move forward by one position and compare

the next two numbers in the list - numbers 23 and 5

23 is greater than 5 so they are swapped.

Step 4: Move forward by one position and compare

the next two numbers in the list - numbers 23 and 34

23 is not greater than 34 so do NOT swap their

position.

Step 5: Move forward by one position and compare

the next two numbers in the list - numbers 34 and 56

34 is not greater than 56 so do not swap.

26

This is the end of the first pass.

You can see from the final image above that the data

set is not quite sorted in ascending order so the

process is repeated once again, starting at the

beginning of the list.

The algorithm is complete when it finishes a pass

without having to perform any swaps.

Bubble Sort pseudocode

The pseudocode below is for the ascending order

algorithm

data_set = [9,2,5,23,34,56]data_

last_exam_position = data

set.length – 2last_exam_position = data_

swap = true

WHILE swap == true

swap = false

FOR i= 0 to last_exam_position
exam

IF data_set[i] > data_set[i

+1] THEN _set[i] > data_

temp = data_set[i+1]

data_set[i+1] = data_set[i]
data_set[i+1] = data_

data_set[i] = temp

swap = true

END IF

NEXT i

END WHILE

PRINT "List is now in ascending

order."

And for completeness sake, a small adjustment to

the pseudocode will sort the list in descending order,

the only line that changes is the one in red shown

below, where the 'greater than' becomes 'less than'

data_set = [9,2,5,23,34,56]

last_exam_position = data_set.length - 2last_exam_position = data_set.length - 2

swap = true

WHILE swap == true

swap = false

FOR i= 0 to last_exam_position

IF data_set[i] < data_set[i +1]

THEN _set[i] < data_

temp = data_set[i+1]

data_set[i+1] = data_set[i]

data_set[i] = temp // the swap is

complete

swap = true

END IF

NEXT i

END WHILE

PRINT "List is now in descending order."

.Bubble Sort pros and cons

27

Advantages

Simple to write the code for.

Simple to understand.

The data is sorted in the same memory location that

it is held, so you don't need much extra memory to

run the algorithm.

Disadvantages

One of the slowest ways to sort a list. For example, if

the list becomes ten times larger than before, it takes

almost a hundred times longer to sort. So this

method of sorting is very sensitive to the length

of the list.

Merge Sort
Although bubble and insertion sorts work well on

small lists of data, they are inefficient at sorting much

larger lists.

The merge sort was developed to handle the sorting

of large lists. It does this by breaking them down into

multiple smaller lists, quickly sorting them, and then

merging them back together into one larger list

i.e. it is faster to sort these two lists then merge

them back together

than to sort the list in its entirety.

Merge sort is an example of a 'divide-and-conquer'

algorithm because it splits down a larger problem

into a number of smaller ones which are then solved.

Each solution is then combined in some way to solve

the larger problem.

Let's take a quick look at an example of a merge sort

and then on the next page we will break it down into

its different stages to help you understand what is

happening, and why:

28

The diagram above showing the first stage of the

merge sort is to keep on splitting the lists until they

are only 1item long. Then each list is first sorted and

then re-combined to form a fully sorted final list.

We start off with a list of unordered numbers which

we want to sort in ascending order:

Step 1: Divide the above list into two smaller lists:

Had there been 9 numbers then we would have a list

of 4 items and a list of 5 items.

Step 2: Divide these lists into smaller, equal sized

lists (dealing with an odd number if necessary):

29

As a human, we can look at this pattern and know

that there are only two items left, meaning we could

theoretically stop here and begin to sort and merge

the data.

However, it is difficult for a computer to "look

ahead" like this. It works out to be more efficient to

simply let the computer run to the end, splitting lists

down to 1or 0 items. So we continue splitting the list

until there is only one item per list.

Step 3: Continue to split each list until there is only

one item per list (or zero in some cases for uneven

lists):

Step 4: Now that the list has been split as far as

possible, we can begin to merge and sort the data ite

ms:

two adjacent lists are paired back together and they

are sorted (for this example, in ascending order). The

ones that changed are the 12,15 pair

Step 5: Two more adjacent lists are merged together

and the items within each list are sorted, the red

numbers changed position:

Step 6: This process of merging and sorting lists

continues until all of the individual lists are merged

together and just one list remains. Within this list, all

of the data items will be sorted into the correct order:

Merge sort pros and cons

With a 'divide-and-conquer' algorithm, there is a lot

of repeating the same steps in a similar way. In this

case the algorithm says 'Keep on dividing the list' and

'keep on merging and sorting'.

The statement 'keep on ...' is a very common and

powerful idea in computer programming. There is a

word for it: 'recursion'.

30

A recursive procedure is one that calls itself with

slightly different arguments until a stop condition is m

et.

In order to code the merge sort algorithm efficiently,

a recursive procedure is used that keeps on splitting

the list and another one is used that keeps on

merging and sorting the lists. The pseudocode for this

is quite complicated and is unlikely to be asked for in

an exam - but here it is.

Advantages

It is the fastest of three types of sort (bubble, insert,

merge)

It is the best option to use for long lists of data (more

than 1000 long)

Disadvantages

More complicated to code compared to bubble and

insert

It may use twice the memory size of the list -
depending on the way it is coded. This becomes

important if the list is millions of items long.

31

ALGORITHMS AND PSEUDOCODE

“Code that resembles a programming language but

that uses a less strict syntax to express an algorithm

and is independent of any real programming

language.”

Below are some examples of how the given

pseudocode can be implemented using Python.

Variable names and

types
Pseudocode Python

Note- you declare what data type the variable is

myVariable

myVariable is integer

name is string

found is Boolean

myArray[99]

In Python you do not have declare what data

type the variable is

In Python we call an array a list

Sequence

Pseudocode Python

name is string

input “Your name:”

age is integer

input “Your age:”

name = input("Your name: ")

age = int(input("Your age: "))

print(name, "in dog years you
are", age * 7)

output name, " in dog years you

are"

output age * 7

Assignment

Pseudocode Python

set age=17 age = 17

set city = “Manchester”
city = "Manchester"

set names =["Bob", "Baz", "Ann"] names = ["Bob", "Baz", "Ann"]

32

Selection
Pseudocode Python

if bobMood == "happy"

set bobEmotion = ":)"

endif

if bobMood == "happy":

bobEmotion = ":)"

if lives > 0

output‘Carry on!’

else

output ‘Game over.’

endif

if lives > 0:

print("Carry on!")

else:

print("Game over.")

Iteration (repetition)

Pseudocode Python

for i= 1 To 10 do

output i*2

next i

endfor

for iin range(1, 11):

print(i*2)

count is integer

set count=10

while count <>5 repeat

set count =count-1

output “Countdown is” count

count = 10

while count != 5:

count = count - 1

print(“Countdown is “, count)

x is integer

set x =0

repeat until x =10 do

output x
set x= x+1

x=0

while x <10:

print(x)

x=x+1

set myArray=[2, 4, 6, 8]

for iin myArray do

output myarray[i]

endfor

myArray=[2, 4, 6, 8]

for iin myArray

print(myArray[i])

33

Operators
Pseudocode Meaning Python

> Greater than >

< Less than <

<= Less than or equal to <=

>= Greater than or equal to >=

<> Not equal to !=

= = The same as = =

AND Both statements must be true for the argument as a

whole to be true.

and

OR Only one of the statements needs to be true for the

argument as a whole to be true.

or

NOT The opposite of not

XOR The argument is false if both statements are true.

The argument is false if both statements are false.

Otherwise the statement is true.

DIV Integer divisionInteger division

Finds the quotient or the 'whole number of times' a

divisor can be divided into a number. 11DIV 2 → 5 (2

divides into 11 a whole number of 5 times)

11//2

MOD Modulo divisionModulo division

Finds the remainder when a divisor is divided into a

number. 11MOD 3 → 2 (11divide by 3 gives a

remainder of 2)

11%3

34

FLOWCHARTS

35

