PAPER 2 REVISION

GUIDE

Edugas Computer Science 9-1
0

30% OF OVERALL MARK
Greenfoot, HTML, Assembly Language,
Algorithms

David Woods with some copy and
paste from www.greenfoot.org,

vanmanas tAamanh 1A+ ~mAamA Navl, Clavliican

WWVV.LCdUIITILL.LUILLT, IVIAdI K CldIT ROUII

and peterhigginson.co.uk

Table of Contents
GREENFOOT

VIS vt eeeiessesesesseses s ses s
... 21 SORTING
ALGORITHMS ...cecorrreeoevesessssssssonsssssssssessssssssssessnes
... 25" ALGORITHMS
AND PSEUDOCODE

erevssesrssssssssseesssisoesen 32 FLOWCHARTS........
A —

1

GREENFOOT

Definitions

Class- stands for the general concept of something in Greenfoot e.g. The class of Wombat defines
all Wombats

Object- We can create objects from a class. E.g. each separate Wombat will be an object (or
instance)

Method- An operation that an object can do. |.e. a bit of code that makes the object work.

How methods work in the program
public void act(}
i
checkKeypress(};
move (5} ;
lookForWorm(};
=witchImage (};
H
e
% Check whether a control key on the keyboard has been pressed.
4 If iv has, react accordingly.
o
public void checkEeypress(}
{

if (Greenfoot.isKeyDown("left®}}
{

turn (-4} ;
3
if [Greenfoot.isKeyDown("right"}}
L4

turn(4};
3

)
yan
+ Check whether we have stumbled upom 2 worm.
* If we have, eat it. If not, do nothing. If we have
+ eaten cight worms, we win.
=/
public void lookForWorm(}
i

(if [isTouching(Worm.clas=} }

{
removeTouching (Rorm.class);
Greenfoot.playSound ("slurp.wav”);

wormsEaten = wormsEaten + 1;

if (wormsEstem = 8)
t
Greenfoot.playSound ["fanfare . wav"};
Greenfoot.stop();

The act() method.
This is what the
object does when
play is pressed. In
- this case a crab...

e Checks for key
press

e Moves

® Looks for worm

e Switchesimage

The act method calls
the other methods
defined below it.

The methods are
defined down here.

You can see
checkKeyPress

lookForworm

The others will be
below.

Cases for defining methods,
classes/objects

variables

Objects and Classes- Capitalise e.g. Worm ,Athlete, Crab, Lobster, Wombat, Tree

Variables —camelCase e.g. totalScore, wormsEaten, a, number, myWorm, x,y etc

Methods — camelCase e.g. checkKeyPress, act, turnAtEdge

Defining Methods

Parameters
anything in the
brackets provides

Does not additional
Can be accessed return information to the
by other objects anything Name of method | method
public void checkKeyPress | ();
Does not
Can be accessed return Needs an integer
by other objects anything Name of method called amount
public void addAmount | (int amount);

Can be accessed

Returns True

by other objects or False Name of method No extras needed
public boolean hasWings | ();
Does not
Can be accessed return 3integers called x y
by other objects anything Name of method z
public void compare | (int x,int y,int z);

Can not be
accessed by other Returns an
objects integer Name of method No extras needed

private int showScore | ();

Defining Variables

When defining variables define the type

Eg. int age; integer called age

age=12; the value 12 has been assigned to age
You can do it in one line

int age =12;

boolean isHungry =True;

int score;

int year=2014;

Variables can be the result of other variables
int a=12

int b=2

int sum =a+b;

The type of a variable can be a class/object
e.g. Crab myCrab;
myCrab = newCrab();

Orin one line

Type of variable is a class —Crab in this case. Note | Name of] ‘ Assign an object ‘

the capital letter

variable | Crab() to the variable

i Crab i myCrab i = i newCrab(); i

4

Local Variables and
instance (global)
variables

If you define variable in a method then that is a local

variable. It disappears outside the method. It belongs
to the method.

You can define an instance variable which you
declare inside the class but outside the method.
Instance variables belong to the class and can be
used again and again. Use the keyword private to

define them.

public class Camel extends Actor

{
private GreenfootImage imagel;
private GreenfootImage imagel;

private int ager
f**

}

Instance variables. Defined in the
class but not in the method. They
use the keyword private.

Global variables

* RAct - do whatever the Camel wants to
do. This method is called whenever
* the "Act' oF "Run' button gets presaed

in the environment.

w4

public void act()

{

boolean is Aliwver

int n;

Local and Globa

Local variables.

Variables Advantages

Local variable only exist in the function or method.
They disappear when the method is not used. Global
variables exist throughout the whole program. Itis
best to use local variables wherever possible. Global
variables waste memory because they use up a
space in RAM from the beginning to the end of the
program. It is more difficult to trace a problem in
programs which use global variables.

Code — Movement

move(int distance); e.g. move(5); -moves in the
way the object is facing bigger the number, faster
the movement

turn(int angle); e.g. turn(180); -full turn
setLocation(x,y); go to a co-ordinate e.g.
1. setLocation(120,200) goes to this
co-ordinate.
2. setLocation(getX(),getY()+4) goes to
current x location, current y location +4 i.e. moves
up on the y-axis

Code —Random
Numbers

Greenfoot.getRandomNumber(integer) will get a

random number between 0 and the integer

Code- Edge detection

isAtEdge() returns True or False

Code — Selection (if
State me ntS) If object hits an edge

turnl7°
if a random number is picked out of a 100 that is less
than 10 (10% of the time) turn -45° public void
checkEdge ()

{

if (isAtEdge())

{
turn {17} :

b

if (Greenfoot.getRandomNumber (100) <10}

[turn{-45);

}

1

Code —Selection
(if-else statements)s

(condition)

{

statements;

}

else

{

statements;

}
Code- Sound

Greenfoot.playSound(“slurp.wav”’);

6

Code-Key Detection

isKkeyDown(“left”)

public wvoid checkEeya()

{
|if (Greenfoot.isKeyDown("left™]])
]
| turn (-4} »
I}
|1if (Greenfoot.isKeyDown ("right™])
[[turnid):
I}

}

Code — Add Objects
to world automatically

Adds two camels to the world

public MyWorld()

{

Frc

Creat

o

. a new world with &00x400 cells
with & ¢

super (600, 400, 1):

Camel myCamel= new Camel ()

add0bject (myCamel, 250,250);

Camel myCamelZ=new Camel():

addibject (myCamel2, 100,100}

Super(600,400,1) —size and resolution of world

Type of variable is | Name of variable

Camel class. Note

A new Camel instance (object) gets assigned to the
variable myCamel

new Camel(); |

‘ the capital letter | ‘
| camel | mycamel =

addObject(myCamel,200,200) the variable
myCamel is added to the world (remember it
contains an object)

7

Code-Collision

Detection

Boolean isTouching(Class cls)

Check whether this act is touching objects of the given class

Example:

if (isTouching(Bee.class))
{

removeTouching (Bee.class);

1

List getintersectingObjects(Class cls)
Return all the objects that intersect this object

Actor getOnelntersectingObject(Class cls)
Return an object that intersect this object
Example:

{

Actor ant;
ant=getOneIntersectingObject (Ant.class);

if (ant != null)
{
World world;
world =getWorld();
world.removeObject (ant) ;

1
See getOneObjectAtOffset for explanation

List getObjectsAtOffset(int dx, in dy, Class cls)

Return all objects that intersect the given location (relative to this object’s location)

Actor getOneObijectAtOffset(int dx, in dy, Class cls)

Return all objects that intersect the given location (relative to this object’s location)

Example: /| Type of variable Actor . variable name worm

Actor worm;
worm = getOneObjectAtOffset(0, 0, Worm.class);
if (worm != null)

/

Place into the variable ‘worm’. Any worm class that
intersects with the object at 0,0 {probably top corner of
your object

{
World world;
world = getWorld():

This s like a double negative if there is not nothing in the variable
worm Le. If there is something or If worm is not empty

Type of variable World . variable name world

world. zenoveﬁbjeCC(wo:n\
} Put the current world into the variable called world

(i.e. a worm)

Remove whatever object is in the worm variable from the world

8

Code-Removing
Objects

Removing yourself!

To remove an object itself i.e. within the code for an
object. E.g. a bacteria cell floats to the edge of a
world and you want it to disappear.
getWorld().removeobject(this);

This method belongs to the world object so you
can’t just use remove object(this); You have to get
access to the world object with getWorld()

if (isAtEdge())

{
getWorld() . remowvelbject {this)

'}
This removes my Bee when it hits the edge

Removing someone else!

removeTouching(Class cls);

if {isTouching{int.classz)])
{

removelouching (Ant.class):

}
Removing someone else 2!

public void checkColision()

{ Actor bacteria;
bacteria=getOneIntersectingObject (Bacteria.class)
if (bacteria'=null)

{

getWorld() . removeCbject (bacteria) ;

Variable called bacteria type is Actor
Put a bacteria.Class (object) into the
variable bacteria when it intersects
If bacteria is not empty (double
negative)

Remove the bacteria (You need get
world as this is from the World class)

Code —stop

Greenfoot.stop();

9

Code —Add Text

import java.awt.Color; at the top (Underneath
import Greenfoot;)

setimage(new Greenfootimage(" Your Text",size,
Color.TEXTCOLOUR, Color.BGCOLOUR));
setimage(new Greenfootimage(" 0", 20,
Color.WHITE, Color.BLACK));

Code —Accessing One
Object from Another

This asteroid game has a counter. You shoot
asteroids and the score increases with every hit.

tut-access-p1 - Java

Class Edit Tools Options

Counter x

[NextError] [Unda] [cut][Copy [Paste] [Fina..] [Closs

import greenfoot.*;
amport java.aws.Color:

fow
* Write a description of class Counter here.

* @author (your name)

* @version (a version number or a date)
7
public class Counter extends Actor
i
private int tovalCount = 0;

public Counter()
«
setImage (new GreenfootImage ("0", 20, Color.WHITE, Color.BLACK)):
)
Jw
* Increase the total amount displaved on the counter, by a given amount.
-/
public void bumpCount (int amount)
i
tatalCount += amount;

s 20, Color.WHITE, Color.BIACK)):
)
)
‘ Class compiled - no syntax errors ‘
[O Reset Speed: L |

The method bumpCount() increases the counter score

10
It would make sense to call the method

bumpCount() from the shot object. I.e. when the

shot hits

the asteroid.

void hitAnAsteroid()
{

bumpCount () ;
}

THIS WILL NOT WORK

Cannot find symbol -
method bumpCount()

The solution to let objects interact with each other I.e. the shot object with the counter object is......

Store a reference to the counter in
the world, then retrieve it from the
shot when we need to.

1.

Storing a reference to the counter in the world

This is the world

private Counter theCounter;—

public Space ()

declare a global variable to store the reference to the
Counter. Must be declared outside the code for space
world but inside the class

{

super (600, 400, 1);

addobject (new Rocket(), 300, 2(
theCounter = new Counter () ;—
addobject (theCounter,

assign global variable (the Counter) a counter in
the world

5, 5);__

2.

Place it in the world

Add a method to the world to retrieve the value of "theCounter" so it can be accessed b

the the other object (shot in this case)

Still in the world
public Counter getCounter ()
{

return theCounter:
}

This will allow the object to get access it will call the
getCounter method on the world to obtain a
reference to the counter.

11

3.

Now to call the bumpCount method on the counter reference from the object.

We are now in the shot class not the world

void hitAnAsteroid() /
{

(S:pac:espaceﬁzld = (SPA:G) 139':“:2‘1() p U L Get a reference to the counter. Put into to
o e comn e - fhaoelos © geConhn R a variable called counter use getCounter()

counter.bumpCount (5) ;
} 2 which you put in the world
Now you can call the bumpCount method.

Which will increase the counter. The
counter will be increased by 5 in this
method call

Get a reference to the world. Putitina
variable (spaceWorld in this case)

Greenfoot Helpful

Shortcuts

Indentation

Indents do not affect the running of the program but

they make it easier to understand

Will sort out the indentation

Code completion

Start to type some code and press

o Lo

lic Counter()

set|(new GreenfootImage("0", 20, Color.WHITE, Color.BLACK)):

void

Incr |[void

setLocation(int, int)

setRotation (int)

greenfoot.Actor
void setImage (GreenfootImage)
Set the image for this actor to the specified image.
Parameters
image - The image.

see - #setlmage(String)

Greenfoot —Common
Errors

1. The classic error! ‘reached end of file while

parsing” You have missed the last }

public class Counter extends Actor
a

private int totalCount = 0; To solve this add the } at the end.
public Counter () Press ctrl+shift+i then check there
d is geen x with yellow then blue

set (new GreenfootImage ("0", 20, Cc e
} then white inside.

fww

Green

* Increase the total amount displayec

*/
public void bumpCount(int amount)
<
totalCount += amount;

Yellow

Blue
«

setInage (new GreenfootD

)

2. ; expected.
>z Counter(})
zti{new GreenfootImage ("0", 20,
Color.WHITE, Cnlnr.BLACKliL

zrease the total amount displayed on the
counter, by a given amount.The code inthe
white sections (in the methods) should have ; at the
end of each line

13

3. Cannot find symbol method.......

Ground ground;
ground = (Ground)getWorld():
ground.removeObject (Gate) ;

Greenfoocl;'yl aSound ("pop.wav") ;

counter.bumpCounter (1) ;

The code has been spelled wrong or you have missed
a dot.
14

HTML

HyperText Markup Language displays and

formats content on a webpage

Tags

<html>.. </html>

<head>..</head>

.</body>

t of website ...

<h?>..</h?> -heading

<html> This is heading 1

<body>

<h1>This i
<h2>This i
<h3>This i

A

heading 2</h2>
heading 3</h3>

wn

<h4>This is heading 4</h4> This is heading 3
<h5>This is heading 5</h5>

<h6>This is heading 6</h6> This is heading 4
</body> This is heading 5
</html> i is heading

‘This is heading 6

heading 1</n1> ' This is heading 2

15

<p>..</p>

<!DOCTYPE html> -

<html> This is a paragraph.
<body> This is a paragraph.
<p>This is a paragraph.</p> ..

<p>This is a paragraph.</p> This is a paragraph.
<p>This is a paragraph.</p>

</body>

</html>

b </b -hold

<i> ., </i> _-talic

<u> ... </u> -underlined

This text is bold
<p>This text is bold</p>
<p><i>This text is italic</i></p> This text is italic
<p><u>This text is underlined</u></p>

This text is underlined

<blockquote> ... </blockquote>

<h1>About WWF</h1> About WWF

<p>Here is a quote from WWF's

website:</p> Here is a quote from WWF's website:
<blockquote> For 50 ‘WWF has been i

i years, protecting the future of
For 50 years, WWF has been protecting nature. The world's leading conservation organization,

the future of nature. The world's VW . 9 N
leading conservation organization, WWF ‘works in 100 countries and is supported by 1.2

works in 100 countries and is supported ‘million members in the United States and close to 5
by 1.2 million members in the United million globally.

States and close to 5 million globally.

</blockauote>

16

 1link text -anchor/link

<html>
<body>

Visit our HTML tutorial

Visit our HTML tutorial

</body>
</html>

<hr> -horizontal rule

<html>
<body>

<h1>HTML</h1>
<p>HTML is a language for describing web pages.</p>

<hr>

<h1>C55</h1>
<p>CSS defines how to display HTML elements.</p>

HTML

HTML is a language for describing web pages.

CSS

CSS defines how to display HTML elements.

</body>
</html>
 ... -unordered list
<1li> ... </1i> -listitem
An Unordered List:
<h4>An Unordered List:</h4>
 ® Coffee
Coffee</1i> ® Tea
<1li>Tea</1i> Milk
<1i>Milk</1i> *

 -Line break

<p>

To break lines
in a text,
use the br element.

</p>

To break lines
in a text,
use the br element.

17

<center> ..</center> -Centre text

<!DOCTYPE html>
<html>
<body>

<p>This is some text.</p>

<center>This text will be center-aligned.</center>
—_—

<p>This is some text.</p>

<p>The center element is not supported in HTMLS. Use

€SS instead.</p>

This is some text.
This text will be center-aligned.
— ——
This is some text.

The center element is not supported in HTMLS. Use
CSS instead.

 -image

18

ASSEMBLY LANGUAGE

This is the mnemonic language that can be used to
program the CPU. It is often simulated with the Little
Man Computer

[Name |Description

HLT Stop (Little Man has a rest).

IADD |Add the contents of the memory address to the Accumulator

SUB Subtract the contents of the memory address from the Accumulator
STA _ [Store the value in the Accumulator in the memory address given.
LDA |Load the Accumulator with the contents of the memory address given
BRA [Branch - use the address given as the address of the next instruction
BRZ [Branch to the address given if the Accumulator is zero

BRP [Branch to the address given if the Accumulator is zero or positive
INP [Input take from Input

OUT [Output. copy to Output

IDAT |[Used to indicate a location that contains data.

Assembly Language Code

Assembly ’ﬂ‘
language £y T

rogram "
ke ° coUNTER ‘

5 INeTRucTioN s o \
e sa 5o Jfff

REGISTER

ADDRESS 7, mumu mn y
& 3 69

sum DAT 19 DAT 0 e
index DAT ACCUMULATOR

count DAT 1)

value DAT
zero DAT

(e coe o | | 5]
[t [

19

Example programs

INP

STA 959

INPE

ADD 99

ouT

HLT
£f Output the sum of two
numbers

- —

INP

SIL FIEST

INP

ADD FIEST

ouT

INP

SUB FIEST

ouT

HLT
FIRST DAT
// Input three nurmbers.
J/ Output the sum of the
firat two
S/ end the third minus the
first

Using BRA

By combining a BRA (break always) with a BRP or
BRZ you can create a loop.

In this program we will take a negative number

(e.g. -7) and keep adding a second number
(e.g. 2) until it gets to O or a positive number:

Message Box:

'INP
. STA first
I INP
| STA second
' LDA first
| looptop ADD second
| BRP done
' BRA looptop
done OUT
HLT

| first DAT
. second DAT

SEARCHING ALGORITHMS
Linear searching

This is the simplest kind of searching. It is also called
the linear search or sequential search Searching starts
with the first item and then moves to each item in
turn until either a match is found or the search
reaches the end of the data set with no match found.
A criteria is set up before the search begins. e.g.

"find the address of customer no 1344" This criteria
will allow a possible match to be found within the
records / items stored. If no match is found, then the
process will return the appropriate message.

Serial searching algorithm

Set up the search criteria

Examine first item in the data
set

If there is a match, end the
procdure and return the result

with 'match found'

If no match is found repeat

with the next item
If the last item is reached
and no match is found return
'match not found'.

Advantages

Serial search is fairly simple to code. For example the
pseudo-code below shows the algorithm in action

For i = 0 to 19
check for match(i, list)
if match__ found return 'match found'
Next i
return 'no match found'

The subroutine starts with a loop going over a 20
element list / array. Each item is checked until either
a match is found or the loop ends and the 'return 'no
match found' is reached.

21
In Flowchart form

Input
‘Which customer number
would you like to look up?’

counter =1

more_records = True

Does
more_records
= True?

Does counter = Output

customer_number? customer
address

Add 1 to counter

SR

Good performance over small to medium lists.
Computers are now very powerful and so checking
potentially every element in the list for a match may
not be an issue with lists of moderate length.

The list does not need to be in any order. Other
algorithms only work because they assume that the
list is ordered in a certain way. Serial searching
makes no assumption at all about the list so it will
work just as well with a randomly arranged list as an
ordered list.

Not affected by insertions and deletions. Some
algorithms assume the list is ordered in a certain way.
So if an item is inserted or deleted, the computer will
need to re-order the list before that algorithm can be
applied. The overhead of doing this may actually
mean that serial searching performs better than
other methods.

Disadvantages

May be too slow over large lists. Computers take a
finite amount of time to search each item, So
naturally, the longer the list, the longer it will take to
search using the serial method. The worst case being
no match found and every item had to be checked.

This speed disadvantage is why other search
methods have been developed.

22

Binary search

This is a fast method of searching for an item in a
sorted / ordered list.

Sometimes, you may be doing a binary search
without realising it.

Example

You want to find Samuel Jones in the local telephone

book. Would you start at page 1 and then go on from
there, page by page? Unlikely.

You don't do this because you know an important
fact about telephone books - the entries are in
alphabetic order. So what you do is make a guess - J
is about halfway down the alphabet and so you open
the telephone book around half way. The page you
see has names starting with N. So you know J will be
in the first half of the book. Next you open a page
about halfway down the first halfthe page has 'H'. So
now Jones must be in the upper half of this section.
You are carrying out a 'Binary search' algorithm.
Notice that after only two guesses you are getting
much closer to the answer. If you were carrying out a
serial search, you would still be at page 2.

Binary Search algorithm

Set the highest location in the list
to be searched as NSet the lowest
location in the list to be searched
as LExamine the item at location (N
- L) /2 (i.e. halfway)Is it a match?
if Yes End search.

No

Is item less than criteria ?

If Yes, Set lower limit L to item +
1 (Force the next searchto use the
upper half)

If No, Set upper limit N to item - 1
(Force the next search touse the
lower half)

Is lower limit = upper limit, if yes
end search (no match found)

Repeat from step 3 with the new
upper and lower bounds.

Is Binary searching better than linear searching?

It depends.

1. If the list is large and changing often, with items
constantly being added or deleted, then the time it
takes to constantly re-order the list to allow for a
binary search might be longer than a simple serial
search in the first place.

2. If the list is large and static e.g. telephone number
database, then a binary search is very fast compared
to linear search. (in maths terms it takes 2log2(n) for
a binary search over n items) 3. If the list is small then
it might be simpler to just use a linear search

4. If the list is random, then linear is the only way

5. If the list is skewed so that the most often
searched items are placed at the beginning, then on
average, a linear search might be better.

23
OUTPUT "Which customer do you want to
find?"
INPUT user inputs John Smith
STORE the user's input in the customer

name variable customer found = False

(we need to create a flag that
identifies if the customer is found)
WHILE customer found = False:
Find midpoint of list
IF customer name = record at
midpoint of list THEN customer found =
True _
ELSE IF customer comes before
the midpoint THEN
throw away the second half of the list
ELSE
throw away the first part of the list
OUTPUT customer details

Input
‘Which customer do you want to find?”

customer_found = False

Does
customer_found
= False?

Find midpoint of list

customer_found customer_name
= True at midpoint of

Qutput
customer
details

customer_name
before midpoint?

Discard second Discard first
half of list half of list

24

SORTING ALGORITHMS

Bubble Sort

A bubble sort is a very simple algorithm used to sort
a list of numerical data into ascending or descending
order.

The algorithm works its way through the list, making
comparisons between a pair of adjacent items. Any
items found to be in the wrong order are then
exchanged. It keeps doing this over and over until all
items in the list are eventually sorted into the correct
order.

Step by step example

The foIonving list of data (9, 23, 2,5, 34, 56) needs to
be put into ascending order using a bubble

sort.

Original set
Step 1
No swap needed

g 23 2 5 324 56

9 23 2 5 34 56

| 9 23 2 5 34 56

Step 1: Compare the first two items in the list, 9 and
23.

As 9 is smaller than 23 they are in the correct order
(ascending) so no action needs to be taken.

Step 2 9232 5 34 56

Swap

9 2 23 5 34 56

Step 2: Move forward by one position and compare
the next two numbers in the list - numbers 23 and 2
25

23 is larger than 2 so the bubble sort will swap the
position of those two items.

Step 3

Swap

9 2 I3 5§ 34 56

9 2 5 £3 34 56

Step 3: Move forward by one position and compare
the next two numbers in the list - numbers 23 and 5
23 is greater than 5 so they are swapped.

Step 4

9 2 5 43 38 56

No swap needed

9 2 5 43 38 56

Step 4: Move forward by one position and compare
the next two numbers in the list - numbers 23 and 34
23 is not greater than 34 so do NOT swap their
position.

Step 5
No swap needed

© teach-ict.com

9 2 5 23 3% W

|92 5 23 34 56

End of 15 Pass

Step 5: Move forward by one position and compare
the next two numbers in the list - numbers 34 and 56
34 is not greater than 56 so do not swap.

26
This is the end of the first pass.

You can see from the final image above that the data
set is not quite sorted in ascending order so the
process is repeated once again, starting at the
beginning of the list.

The algorithm is complete when it finishes a pass

without having to perform any swaps.

Bubble Sort pseudocode

The pseudocode below is for the ascending order
algorithm

data set = [9,2,5,23,34,56]

last exam position = data
set.length - 2

swap = true

WHILE swap == true
swap = false
FOR i = 0 to last exam position

IF data séE[i]-; data set[i
+1] THEN

tem§_= data_set[i;i]

data set[i+l] = data set[i]
data:set[i] = temp B
swap = true
END IF
NEXT i

END WHILE

PRINT "List is now in ascending
order."

And for completeness sake, a small adjustment to
the pseudocode will sort the list in descending order,
the only line that changes is the one in red shown
below, where the 'greater than' becomes 'less than'

[9,2,5,23,34,56]
data set.length - 2

data_set =
last exam position =

swap = true
WHILE swap == true
swap = false
FOR 1 = 0 to last exam position
IF data set[1] < data set[i +1]
THEN _ _
temp = data_set[i+1]

data_set[i+1l] =

data set[i] = temp

complete

swap
END IF
NEXT i

data set[1i]
// the swap is

= true

END WHILE

PRINT "List is now in descending order."

. Bubble Sort pros and cons

27
Advantages
Simple to write the code for.
Simple to understand.
The data is sorted in the same memory location that
it is held, so you don't need much extra memory to
run the algorithm.
Disadvantages
One of the slowest ways to sort a list. For example, if
the list becomes ten times larger than before, it takes
almost a hundred times longer to sort. So this
method of sorting is very sensitive to the length
of the list.

N

, DORChACT.Com

00O
\ V4 -

Merge Sort

Although bubble and insertion sorts work well on
small lists of data, they are inefficient at sorting much
larger lists.

The merge sort was developed to handle the sorting
of large lists. It does this by breaking them down into
multiple smaller lists, quickly sorting them, and then
merging them back together into one larger list

i.e. it is faster to sort these two lists then merge

them back together

2145|16 |9

15|12 7] 8

than to sort the list in its entirety.

Merge sort is an example of a 'divide-and-conquer’
algorithm because it splits down a larger problem
into a number of smaller ones which are then solved.
Each solution is then combined in some way to solve
the larger problem.

Let's take a quick look at an example of a merge sort
and then on the next page we will break it down into
its different stages to help you understand what is
happening, and why:

28

UNSORTED LIST

2|45|]6 |9 |15|12)7 | 8
214516]9 15§12 7] 8
2 |45 6|9 15112 7
2 45 6 9 15 12 7
2 |45 619 12|15 718
216]9 |45 718 |12]15
216|789 |12)15]45

© teach-ict.com SORTED LIST

The diagram above showing the first stage of the
merge sort is to keep on splitting the lists until they

S151| 9843 W pue 1405 SISI| [ENPIAIPUI 03Ul JjdS

are only 1 item long. Then each list is first sorted and

then re-combined to form a fully sorted final list.
We start off with a list of unordered numbers which

we want to sort in ascending order:

214516 (|9 115112 72 | 8

Owww 1each- CLeom

Step 1: Divide the above list into two smaller lists:

2 145 |16: | 9

15112 7 | 8

Cwww J08i-1 com

Had there been 9 numbers then we would have a list
of 4 items and a list of 5 items.

Step 2: Divide these lists into smaller, equal sized
lists (dealing with an odd number if necessary):

29

2 |45 61 %9

15 [12 718

Cwww.testh et com

As a human, we can look at this pattern and know
that there are only two items left, meaning we could
theoretically stop here and begin to sort and merge
the data.

However, it is difficult for a computer to "look
ahead" like this. It works out to be more efficient to
simply let the computer run to the end, splitting lists
down to 1 or 0 items. So we continue splitting the list
until there is only one item per list.

Step 3: Continue to split each list until there is only
one item per list (or zero in some cases for uneven
lists):

2 ||45 || 6 9 || 15

12 1| 7 (|| '8

Cwww leach- k1 com

Step 4: Now that the list has been split as far as
possible, we can begin to merge and sort the data ite
ms:

2 |45 6|9

12 |15 7|8

Cwww teath CLtom

two adjacent lists are paired back together and they
are sorted (for this example, in ascending order). The
ones that changed are the 12,15 pair

Step 5: Two more adjacent lists are merged together
and the items within each list are sorted, the red
numbers changed position:

2 | 6|9 |45

718 |12115

Cwww tesch-ct com

Step 6: This process of merging and sorting lists
continues until all of the individual lists are merged
together and just one list remains. Within this list, all
of the data items will be sorted into the correct order:

2 |6 | Z |8 |9 |12 |125)|45

Cwww 1each-ct com

Merge sort pros and cons

With a 'divide-and-conquer’ algorithm, there is a lot
of repeating the same steps in a similar way. In this
case the algorithm says 'Keep on dividing the list' and
'keep on merging and sorting'.

The statement 'keep on ..." is a very common and
powerful idea in computer programming. There is a
word for it: 'recursion’.

30

A recursive procedure is one that calls itself with
slightly different arguments until a stop condition is m
et.

In order to code the merge sort algorithm efficiently,
a recursive procedure is used that keeps on splitting
the list and another one is used that keeps on
merging and sorting the lists. The pseudocode for this
is quite complicated and is unlikely to be asked for in
an exam - but here it is.

Advantages

It is the fastest of three types of sort (bubble, insert,
merge)

It is the best option to use for long lists of data (more
than 1000 long)

Disadvantages

More complicated to code compared to bubble and
insert

It may use twice the memory size of the list -
depending on the way it is coded. This becomes
important if the list is millions of items long.

31

ALGORITHMS AND PSEUDOCODE

‘Code that resembles a programming language but

that uses a less strict syntax to express an algorithm

and is independent of any real programming

language.”

Below are some examples of how the given

pseudocode can be implemented using Python.

Variable names and

types

Pseudocode

Python

Note- you declare what data type the variable is
myVariable

myVariable is integer

name is string

found is Boolean

myArray[99]

In Python you do not have declare what data
type the variable is

In Python we call an array a list

Sequence

Pseudocode

Python

name is string
input “Your name:”
age is integer

input “Your age:”

name = input ("Your name: ")
age = int (input("Your age: "))
print (name, "in dog years you
are", age * 7)

output name,
are"
output age * 7

" in dog years you

Assignment

Pseudocode Python
set age=17 age = 17
set city = “Manchester” city = "Manchester™
set names =["Bob", "Baz", "Ann"] |hames ["Bob", "Baz", "Ann"]
S | t -
Pseudocode Python
if bobMood == "happy" if bobMood == "happy":
set bobEmotion = ":)" bobEmotion = ":)"
endif

if lives > 0
output ‘Carry on!”’
else
output
endif

‘Game over.’

if lives > 0:

print ("Carry on!")
else:

print ("Game over.")

teration (repetition

Pseudocode

Python

for 1 =1 To 10 do
output i *2
next i

endfor

for i in range(l, 11):

print (i*2)

count is integer

set count=10

while count <>5 repeat
set count =count-1

output “Countdown is” count

count = 10
while count != 5:
count = count - 1

print (“Countdown is “,

count)

x 1is integer

set x =0

repeat until x =10 do
output x
set x= x+1

x=0

while x <10:
print (x)
x=x+1

set myArray=[2, 4,
for i in myArray do

output myarrayl[i]
endfor

6, 8]

myArray=[2, 4, 6,
for i in myArray
print (myArray[i])

8]

Operators

33

Pseudocode Meaning Python
> Greater than >

< Less than <

<= Less than or equal to <=

>= Greater than or equal to >=

<> Not equal to 1=

== The same as ==

AND Both statements must be true for the argumentasa |and
whole to be true.

OR Only one of the statements needs to be true forthe |or
argument as a whole to be true.

NOT The opposite of not

XOR The argument is false if both statements are true.
The argument is false if both statements are false.
Otherwise the statement is true.

DIV Integer division 11//2

Finds the quotient or the 'whole number of times' a
divisor can be divided into a number. 11DIV2 - 5 (2
divides into 11 a whole number of 5 times)

MOD Modulo division 11%3

Finds the remainder when a divisor is divided into a
number. 11 MOD 3 - 2 (11 divide by 3 gives a
remainder of 2)

34

FLOWCHARTS

Algorithms represented using a flowchart
will use the following convention:

Start / Stop procedure
Decision box

Input / Output
Operation

Connector

Store / Subroutine call
Flow of control
(Armmowhead indicates
direction of flow)

35

